
 
 

 
 
1 INTRODUCTION 
 

Damage in structural systems is typically defined as changes that cause deterioration in some 
parameters that describe the stiffness. In damage detection the objective is to have a scheme that 
can detect, as early as possible, changes that may affect the performance of the system. In the 
“before and after” strategy the operating premise is that no damages take place during the data 
collection intervals and damage is identified from changes between two models. In this paper 
our focus is on the detection of damages that takes place abruptly and in situations where the 
time to detection is important. Online detection is typically done by formulating filters that 
represents the reference state and damage is inferred by inspecting the output of the filter as it 
processes the incoming measurements.  

In this paper we introduce an online detection filter that detects damage by tracking the val-
ues of some parameter in a model. The key idea investigated is whether selection of the parame-
ter to be tracked can be done without regard to whether it is in fact the parameter that is affected 
by the damage. To the best of the writer's knowledge, damage detection based on filters was 
first discussed by Mehra and Peshon (1971), who used the whiteness property of the Kalman fil-
ter innovation process as a feature. The seminal work on model based damage detection filters, 
where the objective is not just detection, but also isolation, i.e., identification of the specific na-
ture of the fault, appears in (Beard 1971) and (Jones 1973). One of the first applications of filter 
based damage detection in structural engineering is due to Fritzen, et al. (1995), who used a 
bank of Kalman filters to detect damage.  
     The idea of appending the parameters to the state vector for their online identification is used 
in (Kopp and Orford 1964). Since the state estimation problem becomes nonlinear in this case, 
even if the system itself is linear, the extended Kalman filter is used here to perform the estima-
tion.  In recent years the EKF approach for parameter estimation has received significant atten-
tion in structural engineering with applications in damage detection appearing in (Yang et al. 
2005, Soyoz and Feng 2008, Liu et al. 2009). 

2 DAMAGE DETECTION BY FICTIVE UPDATING 

Consider an input output map of a dynamical system described by 
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 ( ) ( , , ( ))y t f u t   (1)
  
where f  is an arbitrary function, ( )y t  and ( )u t denotes the output and input respectively and 
  and   are two sets of  parameters.  Let the parameters   be fixed to values corresponding 
to a reference condition and   be treated as free parameters. If changes in the  set take place 
and the filter is asked to update the input-output but only the   parameters are allowed to 
change then the filter will attempt to adjust them in some way that minimizes the error criterion. 
Inspection of  , therefore, can be used to detect changes in the   set. Needless to say, if the 
changes take place in   the filter will update these to their true values and detection can also be 
realized. The whole idea being explored here is to keep the mathematical complexity as low as 
possible by making the parameter set   small. 

3 EKF-BASED COMBINED STATE AND PARAMETER ESTIMATION 

In this section we outline the EKF approach to the parameter estimation problem in the case 
where the system is linear and the nonlinearity arises from the augmentation of the state vector 
with unknown parameters. The system considered is assumed to have the following description 

 
 ( ) ( ) ( ) ( ) ( ) ( )x t A x t B u t Lw t     (2) 
                                                   k k ky Cx v    (3) 

             
where ( ) nxnA   , ( ) nxrB   and nxsL   are the transition, input to state and process noise 
to state matrices, respectively and   is a finite dimensional vector of parameters. mxnC   is 
state to output matrix. 1( ) rxu t  , 1( ) nxtx   and 1mx

ky   denote deterministic known in-
put, state and measurement, respectively. The 1( ) sxw t   is the process noise and kv  is the 
measurement noise. In the treatment here it is assumed that these are uncorrelated Gaussian sta-
tionary white noise sequences with zero mean and covariance of Q  and R  respectively. Addi-
tionally, it's also assumed that ( )w t  and kv  are independent of  . One begins by augmenting 
the state with the parameter vector ( )t  , namely 
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The second step involves comprising a new state space model for the augmented state, namely 

 
 ( ) ( ) ( ) ( ) ( ) ( )z t A z t B u t Lw t     (5) 
where 
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Prediction Step: 

The a priori estimate of the state is obtained from 
 

 ˆ ˆ( ) ( ) ( ) ( ) ( )z t A z t B u t    (9) 
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and we take ˆ ˆ( )kz z t  . The a priori state error covariance is calculated from  

 ˆ ˆ( ) ( ( )) ( ) ( ) ( ( ))T TP t F z t P t P t F z t LQL    (10) 
 

where 

  TL L I  (11) 
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with q  as the covariance of the pseudo noise introduced to drive the filter to change the esti-
mate of  . ˆ( ( ))F z t  is the Jacobian of the nonlinear function in Eq.(10) at nominal ˆ( )z t  and is 
given by 
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and we denote kP P  

Update Step: 

The posterior estimate of the state is obtained from, 
 
 ˆ ˆ ˆ( )k k k k kz z K y Cz      (15) 

 
The Kalman gain kK and the posterior error covariance kP are calculated from 
 
 1( )T T

k k kK P C CP C R     (16) 
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The filter is initialized with 
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Convergence of the augmented filter model requires  
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where xK  is the partition of the Kalman gain, corresponding to the un-augmented state, namely 
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3.1 EKF with Fading Memory 

 Examination shows that the EKF combined state and parameter estimation responds to time 
variant changes in the parameters very slowly.  The reaction time can be improved by using the 
concept of a fading memory (Fagin 1964). The equations describing the EKF with fading mem-
ory are identical to the standard EKF except that an additional step for fading memory is intro-
duced with a forgetting factor matrix after the propagation of state error covariance in Eq.(17), 
which is 
 
 T

k kP P     (22) 
 

where  is a diagonal matrix with size (n+p)x(n+p), where n and p represent the numbers of 
states and parameters, respectively. The first n diagonal elements of are set to 1.0 whereas the 
next p elements, denoted by 1 , 2 ,… p   are chosen based on how much forgetting of the past 
data is  required. When 1   there is no fading and in most applications   is taken only 
slightly greater than 1 (e.g., 1.001  ).   

4 NUMERICAL EXPERIMENT: PLANAR TRUSS STRUCTURE 

 This simulation experiment examines the fictive updating approach for damaged detection us-
ing a truss structure. The planar truss structure considered is depicted in Fig.1. All the bars are 
made of steel (with E = 200 GPa) and have an area of 64.5 cm2. Mass is 1.75*105 kg at each co-
ordinates and damping is taken as 2% in all modes.  

 

 
 

Figure 1: Truss Structure Utilized in the Numerical Testing of the Fictive Updating  
 

We obtain results for five sensors placed at coordinates {2, 4, 6, 8, and 10} recording velocity 
in the vertical direction at 100Hz sampling. The sensor at coordinate 6 is also recording the 
horizontal velocity. The deterministic excitation is taken as a segment of white noise process 
having a unit variance and is applied at coordinate 5. Unmeasured excitations are assumed to act 
at coordinates {14, 16, and 20} in the vertical and horizontal directions. The deterministic input 
signal is assumed contaminated by and added noise equal to 10 % of the RMS of the excitation.  
The output noise is taken to have an RMS equal to 10 % o the RMS of the response measured at 
the sensor location. 

We consider three damage cases defined as 20% followed by 40% loss of stiffness in each of 
the three bars (one at a time) denoted as E1, E2 and E3. The fictive updating is performed in 
each case from a simulation of 300 seconds. The fading memory factor of the EKF is fixed as 
1.003. The first five un-damped frequencies of the reference model and damaged models for the 
three cases are depicted in Tables 1-2. 
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Table 1: First Five Frequencies (Hz) of the Truss Model  with 20% Damage Extent in Three Cases 
Freq. Undamaged Bar E1 Bar E2 Bar E3 
No Frequency Freq. %Change Freq. %Change Freq. %Change 
1 0.649 0.642 1.217 0.644 0.870 0.645 0.667 
2 1.202 1.202 0.001 1.202 0.006 1.197 0.454 
3 1.554 1.523 2.066 1.550 0.281 1.553 0.087 
4 2.455 2.379 3.087 2.445 0.411 2.449 0.247 
5 3.302 3.293 0.264 3.298 0.121 3.274 0.852 

 
 

Table 2: First Five Frequencies (Hz) of the Truss Model with 40% Damage Extent in Three Cases 
Freq. Undamaged Bar E1 Bar E2 Bar E3 
No Frequency Freq. %Change Freq. %Change Freq. %Change 
1 0.649 0.629 3.211 0.635 2.279 0.638 1.753 
2 1.202 1.202 0.041 1.202 0.017 1.188 1.171 
3 1.554 1.472 5.334 1.543 0.745 1.551 0.221 
4 2.455 2.287 6.831 2.427 1.129 2.439 0.660 
5 3.302 3.283 0.558 3.287 0.436 3.228 2.251 

 
 

Finite Element Model Based 
We use the stiffness of bar E1 as the parameter to be updated. The results are depicted in 

Fig.4. As can be seen, the update is essentially exact when the damage is actually in bar E1 (as 
one would expect since the model is exact). When the damage is on bar E2 the result is indica-
tive of the changes, although the update is much smaller than the actual change in the bar and 
the parameter does not stabilize during the time window when nothing is changing. When dam-
age is on bar E3 the result is poor.  

 
 

 
  

 Figure 4: Fictive Parameter Updating of the bar E1 in FE model.  
Damage Cases; Left: Bar E1, Middle: Bar E2, Right: Bar E3. 

 
 

Modal Model Based 
 Another possibility is to track a modal parameter such as frequency. In this case the update is 
not truly fictive because the frequencies do in fact change as a result of the damage but we re-
tain the term partly for convenience and partly because only one frequency is allowed to change 
here. In the modal model the matrices are formed using the first 15 pairs of complex modes. The 
results are depicted in Fig.5.  
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Figure 5: Fictive Updating of the first frequency of the modal  model. 
Damage Cases; Left: Bar E1, Middle: Bar E2, Right: Bar E3. 

 
As can be seen, for the damage case of bar E1, parameter updating lead to 2.5% and 6-5% 

change in the first frequency, which is larger than the 1.2% and 3.2% real change as seen in Ta-
bles 1-2; this is a positive feature. The results for bar E2 and E3, however, are less satisfactory.   

5 CONCLUSIONS 

The paper examines the merit of a damage detection strategy based on fictive parameter updat-
ing. The objective is the detection of damages that take place abruptly and in situations where 
the time from the damage appearance to detection is important. The merit of the approach is 
simplicity but the negative feature detected in this pilot work is the fact that the updated values 
do not seem to display strong convergence. In the presence of non-stationary coloured input 
noise one expects that the parameters would tend to fluctuate when there is no change and this 
will make it more difficult to identify small changes. Further research to determine performance 
under these conditions is needed before an assessment on merit can be made.  
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